
 

MOMAP 
Tutorial 06 

PySOC Calculation 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
  



 

 

Version 2020A 
April, 2020 

 

 

MOMAP Tutorial 06 
 

Version 2020A edited by: 

Dr. Qikai Li 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Released by Hongzhiwei Technology (Shanghai) Co., Ltd  
and Z.G. Shuai Group 

The information in this document applies to version 2020A of MOMAP 



 i 

 

Table	of	Contents	
Background ..................................................................................................................................... 1 

Quick Start ...................................................................................................................................... 3 

Excited States Electronic Structure QM Calculation ................................................................................... 5 

Create Control File momap.inp .................................................................................................................. 7 

Use momap.py to do calculation ............................................................................................................... 8 

Check Output Results .............................................................................................................................. 10 
 
 
 



 1 

MOMAP PySOC Tutorial 
 

Background	
 

The Spin-Orbit (SO) interaction is a well-known phenomenon that manifests itself in lifting the 
degeneracy of one-electron energy levels in atoms, molecules, and solids. In solid-state physics, the 
nonrelativistic Schrodinger equation is frequently used as a first approximation, e.g. in electron band-
structure calculations. Without relativistic corrections, it leads to doubly-degenerated bands, spin-up 
and spin-down, which can be split by a spin-dependent term in the Hamiltonian. In this approach, 
spin-orbit interaction can be included as a relativistic correction to the Schrodinger equation. 
 

The SO interaction effect is always present, and gives corrections to the total energy and its 
derivatives. Actually, the strength of the SO coupling increases quickly with the atomic number Z: as 
inner-shell electrons are pulled closer to the nucleus, their kinetic energy increases and relativistic 
effects become very important. In many cases, for light elements, these can be neglected, or 
approximated by the scalar relativistic terms in the Dirac equation. However, for specific properties, 
SO effects might be important even when only light elements are present, as for graphite. In second-
row transition metals and heavier elements, but also for some lighter elements, the SO effect is 
essential to reproduce correctly the electronic structure of materials. Classic examples include the 
valence band splitting of GaAs, and the multiplet structure of the f-band metals. For heavier 
elements, in general, the SO effect becomes as important for structural and dynamical properties as 
for electronic properties. In addition, for bulk structures SO should be used if heavier elements are 
included (late d-metals, f-metals), and for surfaces SO should be considered as well due to 
anisotropy of interface with vacuum.  
 

MOMAP PySOC can be used to calculate the spin-orbit coupling (SOC) elements between 
singlet and triplet states, including both ground and excited states. The SOC plays a fundamental role 
in spin-forbidden excited-state processes, such as intersystem crossing and phosphorescence. From 
the computational chemistry standpoint, with the increasing popularization of dynamics simulations 
for studying excited states and charge transport, there is an increasing demand for new methods to 
efficiently evaluate SOC elements. PySOC targets this demand, with SOC computations using DFT-
based methods. In the current version, PySOC is interfaced to Gaussian g09/g16 and DFTB+ codes, 
while the atomic integrals in PySOC are calculated by the MolSOC code developed by Sandro 
Giuseppe Chiodo et al. SOCs are evaluated on the basis of time-dependent density functional theory 
(TDDFT), TDDFT with Tamm-Dancoff approximation (TDA), and time-dependent density 
functional tight binding (TD-DFTB); all three solved within linear-response approximation and 
using Casida’s wave functions. Calculations with PySOC are very fast. The initial linear-response 
calculation is typically the computational bottleneck of SOC evaluations, and the final cost is 
basically that of computing energies for the singlet and triplet states of interest. 
 



 2 

References: 
1. E. K. U. Gross and R. M. Dreizler, LDA Density Approximations in Quantum Chemistry and Solid State Physics 

(Plenum, 1986), pp. 353–379. 
2. C. L. Kane and E. J. Mele, Phys. Rev. Lett., 2005, 95, 226801. 
3. M. P. Surh, M.-F. Li, and S. G. Louie, Phys. Rev. B, 1991, 43, 4286.  
4. M. Divis, M. Richter, H. Eschrig, and L. Steinbeck, Phys. Rev. B, 1996 53, 9658. 
5. X. Gao, S. Bai, D. Fazzi, T. Niehaus, M. Barbatti, and W. Thiel, Evaluation of spin-orbit couplings with linear-

response time-dependent density functional methods, J. Chem. Theory Comput., 2017, 13, pp 515-524. 
6. Sandro Giuseppe Chiodo, Monica Leopoldini, MolSOC: A spin-orbit coupling code, Computer Physics 

Communications, 2014, 185, pp 676-683. 

	
 	



 3 

Quick	Start	
 

Once MOMAP is properly installed, the PySOC package is located under $MOMAP_ROOT/ 
pysoc directory, and looks like the following: 

 
 

[MOMAP]$ tree pysoc 
pysoc 
├── bin 
│   ├── dftb+.exe 
│   ├── dp_bands.exe 
│   ├── dp_dos.exe 
│   ├── gen2cif.exe 
│   ├── gen2xyz.exe 
│   ├── makecube.exe 
│   ├── modes.exe 
│   ├── molsoc0.1.exe 
│   ├── repeatgen.exe 
│   ├── soc.py 
│   ├── soc_prepare.py 
│   ├── soc_td.exe 
│   ├── straingen.exe 
│   ├── waveplot.exe 
│   └── xyz2gen.exe 
├── examples 
│   ├── ch2o_gaussian 
│   │   ├── AO_overlap 
│   │   ├── MOA_coeffs 
… 
├── input_template 
│   └── init.py 
├── lib 
│   └── python2.7 
│       └── site-packages 
│           ├── dptools 
│           │   ├── __init__.py 
… 
└── parameters 
    └── mio-1-1 
    │   ├── C-C.skf 
    │   ├── C-H.skf 
    │   ├── C-N.skf 
    │   ├── C-O.skf 
    │   ├── C-P.skf 
    │   ├── C-S.skf 
… 
    └── mio-1-1-fit 
        ├── C.basis 
        ├── H.basis 
        ├── N.basis 
        ├── O.basis 
        ├── P.basis 
        └── S.basis 
 
13 directories, 158 files 

 



 4 

The basic steps involved to do PySOC calculation are as follows: 

1. Prepare QM calculation input file 
2. Prepare momap.inp 
3. Use momap.py to carry out calculations. 
 
That’s it. Now let us dig a little into the details. 

 

 	



 5 

Excited	States	Electronic	Structure	QM	Calculation	
 
n Gaussian 09/16 

Prepare the Gaussian input com file with the following suggested must-have settings: 

%rwf=gaussian.rwf 
# td(50-50,nstates=5)wB97XD/TZVP 6D 10F nosymm GFInput 

The keywords, 50-50, nstates=5, mean 5 singlets and 5 triplets will be calculated. 

Note:  
a) The gaussian.rwf, 6D, 10F, GFInput key words are necessary, and the string gaussian is to be 

replaced with your own molecular name, for example, ch2o0. The com, log, chk, and rwf file name stub 
should be the same. 

b) When setting the basis, please check the max layer for each element which should be less or equal than f shell. 
(The higher level like g shell is not available in the following SOC calculation at the moment.) 

 
A typical .com file is shown as follows: 

 
 

n TD-DFTB+  
(Strongly suggested: Read the manual before using it) 
 
a) Prepare geometry file from *.xyz file:  

xyz2gen.exe *.xyz to *.gen 
Note:  
The xyz2gen.exe is a kind of geometry generation tool from dptools for td-dftb+ and should be 
installed, and work properly. 
b) Prepare dftb_in.hsd for td-dftb+ input: 

Besides the general settings, the following key words should be added in the .hsd input. 
Set parameters: HubbardDerivatives for related elements. 
set WriteTransitions = Yes 
set WriteTransitionDipole = Yes  
set WriteEigenvectors = Yes 

[ch2o_gaussian]$ cat ch2o0.com  
%mem=1GB 
%nprocs=8 
%chk=ch2o0.chk 
%rwf=ch2o0.rwf 
# td(50-50,nstates=5) wB97XD/TZVP 6D 10F nosymm GFInput 
                  
test 
                  
0 1 
C         -0.131829      -0.000001      -0.000286 
O          1.065288       0.000001       0.000090 
H         -0.718439       0.939705       0.000097 
H         -0.718441      -0.939705       0.000136 
 



 6 

set WriteXplusY = Yes 
set WriteHS = No 

c) run tddftb+ calculation 
d) run tddftb+ once again (this step should be very fast, as it just read the parameterized 

matrix elements) in the same directory, but with the following changes: 
set WriteHS = Yes 

 
A typical dftb_in.hsd file is shown as follows: 

 

 
 

Note: 
The QM calculation by using Gaussian g09/g16 are recommended, as the TD-DFTB+ needs to be 
fully tested. 
 

 	

[ch2o_tddftb]$ cat dftb_in.hsd 
Geometry = GenFormat { 
  <<< "ch2o.gen" 
} 
 
Driver = {} 
… 



 7 

Create	Control	File	momap.inp	
 
The MOMAP momap.inp for doing PySOC calculation is straightforward, as shown below: 
 
For Gaussian g09/g16 

 
 
 
For TD-DFTB: 

 
 
Note: 
 The qc_ppn should be compatible with the nprocs setting in QM input file. More parameters 
can be added, please refer to the MOMAP User Guide for details. 
 

 	

[ch2o_gaussian]$ cat momap.inp  
do_pysoc     = 1 
 
&pysoc 
  sched_type  = local                ! can be pbs, slurm, lsf, or local 
  qc_queue    = X12C 
 
qc_exe      = g09                      ! g09 or g16 
qc_ppn       = 8 
module_qc  = gaussian/g09.e01  ! optional 

 
  pysoc_QM_code = 'gauss_tddft'     ! gauss_tddft or tddftb 
  pysoc_QM_input_file = ch2o0.com   ! used only by gauss_tddft  
 
  n_excited_singlets = 4 
  n_excited_triplets = 4 
/ 
 

 [ch2o_tddftb]$ cat momap.inp  
  do_pysoc    = 1 
 
 &pysoc 
   sched_type  = local            ! can be pbs, slurm, lsf, or local 
   qc_queue  = X12C 
 
 qc_exe = dftb+.exe 
 qc_ppn = 8  

 
   pysoc_QM_code = 'tddftb'       ! gauss_tddft or tddftb 
 
   n_excited_singlets = 4 
   n_excited_triplets = 4 
/ 



 8 

Use	momap.py	to	do	calculation	
 
 In a typical PySOC calculation, one needs only a QM calculation input file *.com or 
dftb_in.hsd, a MOMAP control file momap.inp, and optionally a run script file run.sh. Once  
the files are ready, we can use momap.py to do the calculation by using the following command: 
 
[ch2o_gaussian]$ ./run.sh  

 
 The run.sh script is shown as follows: 

 
 The “1> log 2>&1” means to join the stdout and stderr, and redirect to file log. 
 

The momap.py will first call soc_prepare.exe to generate two files, that is, init.py and 
a job submission script run_job.*, based on the momap.inp and the environmental settings. 
 

Users should check the generated init.py carefully in the process of running, and stop the job 
if abnormal settings are found. 

 
A typical job script file is as shown as follows: 

 
 
A typical input file init.py is as shown as follows: 
 

[ch2o_gaussian]$ cat run.sh  
#!/bin/sh 
 
python $MOMAP_ROOT/bin/momap.py -n 8 1> log 2>&1 & 
 

[ch2o_gaussian]$ cat run_job.local  
#!/bin/sh 
 
g09 ch2o0.com 
 
rm -f RUN/running.pysoc 
 



 9 

 
Note:  

The PySOC needs python 2.7 or above to run! 

  

When calculation is finished, the final file layout is as follows: 

 
All the calculation related files are moved to directory data, and the PySOC results are in file 

pysoc_output.dat.  

 	

[ch2o_gaussian]$ cat init.py 
# module called by soc.py 
# general control for spin-orbit coupling calculation 
 
import os 
import sys 
 
# Control parameters 
QM_ex_flag = False    # False we do QM calculation separately 
QM_code = 'gauss_tddft'  # gauss_tddft or tddftb 
n_s = [1, 2, 3, 4]    # number of excited singlets 
n_t = [1, 2, 3, 4]    # number of excited triplets 
n_g = ['True']        # default to including ground state 
soc_scal = 1          # scaling factor for Zeff in SOC operator 
cicoeff_thresh = [1e-05]   # threshhold for ci coeff 
 
# molsoc code from Sandro Giuseppe Chiodo 
# with small modifications for input because only the soc 
# in atomic basis is needed in the following calculation 
 
MOMAP_ROOT = os.getenv('MOMAP_ROOT') 
if not MOMAP_ROOT: 
    print ('Please set environment variable MOMAP_ROOT!') 
    sys.exit(1) 
dir_para_basis = MOMAP_ROOT + '/pysoc/parameters/mio-1-1-fit' 
 
# Input files 
if QM_code == 'gauss_tddft': 
# from Gaussian output 
    qm_out = ['ch2o0.log', 'ch2o0.rwf'] 
    geom_xyz = [] 
    soc_key  = ['ANG', 'Zeff', 'DIP'] 
elif QM_code == 'tddftb': 
# from TD-DFTB+ output 
    qm_out = ['band.out', 'EXC.DAT', 'oversqr.dat', 'eigenvec.out', 'XplusY.DAT', 'SPX.DAT'] 
    geom_xyz = ['dty.xyz'] 
    soc_key  = ['ANG', 'Zeff', 'DIP', 'TDB'] 
 
# input for molsoc(to be generated) 
molsoc_input = ['molsoc.inp', 'molsoc_basis'] 
 



 10 

Check	Output	Results	
 
Once the run is successful, the SOC elements should be found in output file pysoc_output.dat, 

and looks like the following: 

 
 

There are four numbers in each line corresponding respectively to root sum square of the subshell 
number, the module length of the subshell with quantum numbers 1, 0, -1. The unit is in cm-1. For 
example, the <S0|Hso|T1,1,0,-1> means SOC between ground state and first triplet with 
quantum numbers 1, 0, -1, respectively. 

 
 
 

 


