MOMAP
Tutorial 07

Dalton Calculation

MGMAP

Molecular Material Property Prediction Package

Version 2020A

May, 2020

MOMAP Tutorial 07

Version 2020A edited by:
Dr. Qikai Li

Dr. Deping Hu

Released by Hongzhiwei Technology (Shanghai) Co., Ltd

and Z.G. Shuai Group

The information in this document applies to version 2020A of MOMAP

TABLE OF CONTENTS

210 L1111 17 L (N 1
QUICK STATLeeeeeeeeeeeeeeieiieeieiticieettisiessteaseesssesssssssssssssssnssessssssssssssssssssssnssssssnsssssssnsssssssnnsanns 3
Prepare Dalton MOl fil@........ e rreee e s rene e s s e s e s e s s e nas s s aenas s saenasessaenasssseenans 5
Create Control File MOMAapP.inp ...cocieeiiiiiiiiiiiiiiciiiieiieee e iisssseriessssstisssssstesssssssesssssssesnssssssnnensns 7
Use momap.py to do calculation.......cc.ciieeiiiiiiiiiiiii it reesessas e sensesenssssensssenssssnsssensesensanns 8

L =TI LYo =T 0NV oYY 1 =] o L 11

MOMAP Dalton Tutorial

BACKGROUND

The Spin-Orbit (SO) interaction is a well-known phenomenon that manifests itself in lifting the
degeneracy of one-electron energy levels in atoms, molecules, and solids. In solid-state physics, the
nonrelativistic Schrodinger equation is frequently used as a first approximation, e.g. in electron band-
structure calculations. Without relativistic corrections, it leads to doubly-degenerated bands, spin-up
and spin-down, which can be split by a spin-dependent term in the Hamiltonian. In this approach,
spin-orbit interaction can be included as a relativistic correction to the Schrodinger equation.

The SO interaction effect is always present, and gives corrections to the total energy and its
derivatives. Actually, the strength of the SO coupling increases quickly with the atomic number Z: as
inner-shell electrons are pulled closer to the nucleus, their kinetic energy increases and relativistic
effects become very important. In many cases, for light elements, these can be neglected, or
approximated by the scalar relativistic terms in the Dirac equation. However, for specific properties,
SO effects might be important even when only light elements are present, as for graphite. In second-
row transition metals and heavier elements, but also for some lighter elements, the SO effect is
essential to reproduce correctly the electronic structure of materials. Classic examples include the
valence band splitting of GaAs, and the multiplet structure of the f-band metals. For heavier
elements, in general, the SO effect becomes as important for structural and dynamical properties as
for electronic properties. In addition, for bulk structures SO should be used if heavier elements are
included (late d-metals, f-metals), and for surfaces SO should be considered as well due to
anisotropy of interface with vacuum.

MOMAP PySOC can be used to calculate the spin-orbit coupling (SOC) elements between
singlet and triplet states, including both ground and excited states. The SOC plays a fundamental role
in spin-forbidden excited-state processes, such as intersystem crossing and phosphorescence. From
the computational chemistry standpoint, with the increasing popularization of dynamics simulations
for studying excited states and charge transport, there is an increasing demand for new methods to
efficiently evaluate SOC elements. PySOC targets this demand, with SOC computations using DFT-
based methods. In the current version, PySOC is interfaced to Gaussian g09/g16 and DFTB+ codes,
while the atomic integrals in PySOC are calculated by the MolSOC code developed by Sandro
Giuseppe Chiodo et al. SOCs are evaluated on the basis of time-dependent density functional theory
(TDDFT), TDDFT with Tamm-Dancoff approximation (TDA), and time-dependent density

functional tight binding (TD-DFTB); all three solved within linear-response approximation and using
Casida’s wave functions. Calculations with PySOC are very fast. The initial linear-response
calculation is typically the computational bottleneck of SOC evaluations, and the final cost is
basically that of computing energies for the singlet and triplet states of interest.

An alternative way to calculate the SOC at the TDDFT level is to use the DALTON? program,
which is free and open-source, and has been integrated with MOMAP. In doing the SOC calculation,
the scaled spin-orbit integrals and the atomic-mean-field approximation can be used and the
relativistic effects can be included using Douglas-Kroll-Hess second-order one-electron scalar
integrals. The DALTON can also be used to calculate the “transition moment” of triplet states with
quadratic response theory, which is very useful in the prediction of phosphorescence rate.

References:

1. E. K. U. Gross and R. M. Dreizler, LDA Density Approximations in Quantum Chemistry and Solid State Physics
(Plenum, 1986), pp. 353-379.

C. L. Kane and E. J. Mele, Phys. Rev. Lett., 2005, 95, 226801.

M. P. Surh, M.-F. Li, and S. G. Louie, Phys. Rev. B, 1991, 43, 4286.

M. Divis, M. Richter, H. Eschrig, and L. Steinbeck, Phys. Rev. B, 1996 53, 9658.

a > WD

X. Gao, S. Bai, D. Fazzi, T. Niehaus, M. Barbatti, and W. Thiel, Evaluation of spin-orbit couplings with linear-response

time-dependent density functional methods, J. Chem. Theory Comput., 2017, 13, pp 515-524.

6. Sandro Giuseppe Chiodo, Monica Leopoldini, MolSOC: A spin-orbit coupling code, Computer Physics
Communications, 2014, 185, pp 676-683.

7. DALTON website: https://www.daltonprogram.org/ (https://doi.org/10.1002/wcms.1172)

https://www.daltonprogram.org/
https://doi.org/10.1002/wcms.1172

QUICK START

Once MOMAP is properly installed, the Dalton package is located under
$MOMAP ROOT/dalton directory, and looks like the following:

[MOMAP-2020A]S$ tree dalton
dalton

— GIT HASH

— VERSION

— basis

— 3-21++G

— 3-21++G¥*

— 3-21G

— 3-21G*

— 4-31G

— 6-31++G

— 6-31++G*

— 6-31++G**

— 6-31+4+G

— 6-31+G*

— 6-311++G(2d, 2p)
—— 6-311++G (3df, 3pd)
— 6-311++G**

— 6-311+G*

— 6-311G

— 6-311G (2df, 2pd)
— 6-311G*

— 6-311G**

— 6-31G

—— 6-31G (3df, 3pd)
— 6-31G*

— 6-31G**

— dalton

— dalton.x

— dalton_get info.py
— dalton_prepare.py
— tools

10 directories, 390 files

To facilitate Dalton calculation with MOMAP, we have added several handy python scripts to
prepare for the Dalton jobs:

= dalton gjf2mol.py
= dalton xyz2Zmol.py
= dalton prepare.py

= dalton get info.py

Users can use the first two python scripts to prepare the Dalton mol file. Use -h or --help to
see how to use the python script. For example,

[MOMAP]$ ~/MOMAP-2020A/dalton/dalton get info.py --help
Usage:
dalton get info.py dalton.out

The basic steps involved to do Dalton calculation with MOMAP are as follows:

1. Prepare the Dalton mol input file, for example, by using dalton gjf2mol.py or
dalton xyzZ2mol.py

2. Prepare the MOMAP control file momap. inp

3. Usemomap.py to carry out calculations.

That’s it.

PREPARE DALTON MOL FILE

B From Gaussian gjf / com file

Use dalton gjf2mol.py to do the conversion. We use benzaldehyde as an example, a
typical . com file for benzaldehyde is shown as follows:

[dalton]$ cat sl.com

%chk=sl.chk

opt freq hf/3-21g

sl

0

C -3.73319912 -0.55712190 -0.16925411

C -2.37835267 -0.57337757 -0.14291193

C -1.66623688 0.62289202 0.01756275

C -2.35515545 1.83597157 0.15079624

C -3.71000188 1.85222733 0.12445331

C -4.42211769 0.65595762 -0.03602037

H -4.27691530 -1.47050010 -0.29178158

H -1.85234803 -1.49959061 -0.24463967

H -0.59651602 0.61005739 0.03836076

H -1.81143921 2.74935011 0.27332084

H -4.23600647 2.778440061 0.22617901

C -5.82315209 0.67276744 -0.06326038

O -6.48440249 -0.43805445 -0.21227156

H -6.34915671 1.59898056 0.03846668
The converted mol file is shown as follows:

[dalton]$ cat sl.mol

ATOMBASIS

Generated by MOMAP

through gjf2mol.py

Atomtypes=3 Charge=0 Angstrom NoSymmetry

Charge=8.0 Atoms=1 Basis=3-21G

¢} -6.624639 -0.366782 -0.207243

Charge=6.0 Atoms=7 Basis=3-21G

C -3.719449 -0.576840 -0.171374

C -2.333845 -0.567037 -0.141329

C -1.629876 0.624964 0.018395

C -2.332137 1.826888 0.150011

C -3.713231 1.843764 0.123386

C -4.437544 0.636680 -0.038491

C -5.855595 0.662291 -0.064834

Charge=1.0 Atoms=6 Basis=3-21G

H -4.258167 -1.509588 -0.296198

H -1.794804 -1.503817 -0.244132

H -0.545581 0.621354 0.040553

H -1.790669 2.759467 0.274745

H -4.250471 2.781998 0.226379

H -6.407538 1.605826 0.038065

B From XMOL xyz file

a) Prepare the dalton mol file from xyz file as follows:
$ dalton xyz2mol.py sl.xyz -b 3-21G

Note: Use option -b or --basis to setthe basis.

[dalton]$ cat sl.xyz
14

scf done: -345.449312

C -3.719449 -0.576840 -0.171374
C -2.333845 -0.567037 -0.141329
C -1.629876 0.624964 0.018395
C -2.332137 1.826888 0.150011
C -3.713231 1.843764 0.123386
C -4.437544 0.636680 -0.038491
H -4.258167 -1.509588 -0.296198
H -1.794804 -1.503817 -0.244132
H -0.545581 0.621354 0.040553
H -1.790669 2.759467 0.274745
H -4.250471 2.781998 0.226379
C -5.855595 0.662291 -0.064834
0 -6.624639 -0.366782 -0.207243
H -6.407538 1.605826 0.038065

The XMOL xyz file format is very simple, and is represented by a two-line "header", followed
by one line for each atom. The converted mol file is shown as follows:

[dalton]$ cat sl.mol

ATOMBASIS

Generated by MOMAP

through xyz2mol.py

Atomtypes=3 Charge=0 Angstrom NoSymmetry
Charge=8.0 Atoms=1 Basis=3-21G

¢} -6.624639 -0.366782 -0.207243
Charge=6.0 Atoms=7 Basis=3-21G

C -3.719449 -0.576840 -0.171374
C -2.333845 -0.567037 -0.141329
C -1.629876 0.624964 0.018395
C -2.332137 1.826888 0.150011
C -3.713231 1.843764 0.123386
C -4.437544 0.636680 -0.038491
C -5.855595 0.662291 -0.064834
Charge=1.0 Atoms=6 Basis=3-21G

H -4.258167 -1.509588 -0.296198
H -1.794804 -1.503817 -0.244132
H -0.545581 0.621354 0.040553
H -1.790669 2.759467 0.274745
H -4.250471 2.781998 0.226379
H -6.407538 1.605826 0.038065

Please check the generated mol file for any abnormalities. From the generated mol file, we can
see that all the basic fields are filled and it seems to be fine.

CREATE CONTROL FILE MOMAP.INP

The MOMAP momap . inp for doing Dalton calculation is straightforward, as shown below:

[dalton]$ cat momap.inp

do_dalton =1

&dalton
sched type = pbs ! default to 'pbs', can be pbs, slurm, Isf or local
gc_queue = X12C ! default to ‘workq'
module gc = dalton/2018.0 ! defaultto "
gqc_exe = dalton ! default to 'dalton’
gqc_ppn = 8 ! defaultto 1
tl s0 soc =1 ! defaultto 0
tn sn soc =1 ! defaultto 0
tl trans dip = ! defaultto O
ex molfile = sl.mol
functional = 'B3LYP' ! default to 'B3LYP'
nstates = 3 ! defaultto 3

/

Note:

Most parameters are optional, and having their defaults, users only need to set the key parameters
for the specific case.

USE MOMAP.PY TO DO CALCULATION

In a typical Dalton calculation, one needs only a Dalton geometry input file * .mo1, a MOMAP
control file momap . inp, and optionally a run script file run. sh. Once the files are ready, we can
use momap . py to do the calculation by using the following command:

[dalton]$./run.sh

The run. sh script is shown as follows:

[dalton]$ cat run.sh
#!/bin/sh
python $MOMAP ROOT/bin/momap.py 1> log 2>&1 &

The “1> log 2>&1” means to join the stdout and stderr, and redirect to file 1og.

The momap . py will firstcall dalton prepare.py to generate the Dalton *.da1l files and a
job submission script run_job. *, based on the momap . inp and environmental settings.

A typical job script file is as shown as follows:

[dalton]$ cat run job.pbs
#PBS -1 walltime=1000:00:00
#PBS -1 nodes=1:ppn=8

#PBS -q X12C

#PBS -o stdout

#PBS -j oe

if test -f 'hosts'; then
rm -f hosts
fi
echo ${PBS NODEFILE} > hosts
cd $¢{ PBS_O_WORKDIR}

SMOMAP ROOT/dalton/dalton -mb 120 -noarch -nodelist hosts -N 8 tl s0_ soc
sl &> stdout.tl s0O soc

rm -f RUN/running.dalton-tl sO_ soc

SMOMAP ROOT/dalton/dalton -mb 120 -noarch -nodelist hosts -N 8 tn sn_soc
sl &> stdout.tn sn soc

rm -f RUN/running.dalton-tn sn soc

SMOMAP ROOT/dalton/dalton -mb 120 -noarch -nodelist hosts -N 8
tl trans dip sl &> stdout.tl trans dip

rm -f RUN/running.dalton-tl trans_dip

In the above-mentioned scripts, we will carry out calculations on:

tl s0 soc
tn sn soc

tl trans dip

When the calculations are finished, the final file layout is shown as follows:

Ldalton]$ 1s

RUN run.sh
hosts run_job.pbs
log sl.com
momap.inp sl.mol
nodefile sl.xyz
[dalton]$ []

stdout.tl_s@_soc

t1l_s0@_soc_sl.out

stdout.tl_trans_dip tl1_trans_dip.dal

stdout.tn_sn_soc
t1_s0_soc.dal

|t1 s@_soc_sl.dat |

t1_trans_dip_sl.dat
t1_trans_dip_sl.out

tn_sn_soc.dal

|tn_sn_soc_sl.dat|

tn_sn_soc_sl.out

All the treated Dalton output results are in * . dat files as shown above:

[dalton]$ cat tl s0 soc _sl.dat

Parsing Spin-orbit coupling

Hso x: 47.978703 cm-1
Hso y: 56.403667 cm-1
Hso z: 7.920588 cm-1
Hso ave: 42.996377 cm-1

constants...

Parsing polarization partial rates...

Parsing transition dipole...

[dalton]$ cat tl trans dip sl.dat

Parsing Spin-orbit coupling

constants...

Parsing polarization partial rates...

dipole sub state x:
dipole sub state y:
dipole sub state z:

dipole average (mod) :

Parsing transition dipole...

3.851000e-03
8.813000e-04
3.453000e-04
1.007941e-02

dipole sub state x:
dipole sub state y:
dipole sub state z:

dipole average (mod) :

3.851000e-03
8.813000e-04
3.453000e-04
1.007941e-02

au
au
au

debye

au
au
au

debye

[dalton]$ cat tn sn soc sl.dat
Parsing Spin-orbit coupling constants...
Parsing polarization partial rates...

Parsing transition dipole...

1 -0.006584
1 0.006584
1 -0.186553
1 -8.917254
1 -11.460965
1 -1.591191
1 -26.251361
1 -30.269941
1 -4.277561
1 -24.818191
1 -29.231826
1 -4.117344
1 0.002195
1 0.002195
1 -0.006584
1 0.184359
1 0.478455
1 0.041700
1 -0.805472
1 -1.733850
1 -0.230448
1 0.000000
1 -0.006584
1 0.002195
1 0.002195
1 0.004389
1 0.006584

Note:

The first

6 columns correspond to the
excited state no., symmetry,
excited state no., symmetry,

spin of B,
spin of C

&

The job is done.

10

INTEL IMPI ENVIRONMENT

To run the Dalton job in parallel, one may need to use the intel IMPI environment. First

download the intel IMPI package from the link: http://www.momap.net.cn/index.php/downloads/
under the section “Related software”. Move the downloaded file to the desired installation directory

and unzip the file by command:

$ tar xzf IMPI-2019.5.281-1linux-x86 64.tar.gz

Then add the following line to the job submission script file:

source <installed dir>/IMPI/intel64/bin/mpivars.sh

Or modify the MOMAP ROOT/dalton/dalton prepare.py once and for all.

The job submission script file may look like the following:

[dalton]$ cat run job.pbs
#PBS -1 walltime=1000:00:00
#PBS -1 nodes=1:ppn=38

#PBS -gq X12C

#PBS -o stdout

#PBS -3j oe

if test -f 'hosts'; then
rm —-f hosts
fi
echo ${PBS NODEFILE} > hosts
cd ${PBS_O WORKDIR}
source <installed dir>/IMPI/intel64/bin/mpivars.sh

SMOMAP ROOT/dalton/dalton -mb 120 -noarch -nodelist hosts -N 8 tl s0O soc
sl &> stdout.tl sO soc

rm -f RUN/running.dalton-tl s0 soc

SMOMAP ROOT/dalton/dalton -mb 120 -noarch -nodelist hosts -N 8 tn_sn_soc
sl &> stdout.tn sn soc

rm -f RUN/running.dalton-tn sn soc

SMOMAP ROOT/dalton/dalton -mb 120 -noarch -nodelist hosts -N 8
tl trans dip sl &> stdout.tl trans dip

If the environment module is used in the computing cluster, one may not need to modify the job
submission script, suppose the intel IMPI module name is intel/impi/2019.5.281, we can

simply modify the momap . inp as follows:

11

http://www.momap.net.cn/index.php/downloads/

[dalton]$ cat momap.inp

do_dalton =1

&dalton
sched type = pbs ! default to 'pbs', can be pbs, slurm, Isf or local
gc_queue = X12C
module gc = dalton/2018.0 intel/impi/2019.5.281
gc_exe = dalton ! default to 'dalton’
gqc_ppn = 8 ! defaultto 1
tl s0_soc =1 ! defaultto O
tn_sn_soc =1 ! defaultto O
tl trans dip = 1 ! defaultto O
ex molfile = sl.mol
functional = 'B3LYP' ! default to '‘B3LYP
nstates = 3 ! defaultto 3

Then, we can do the Dalton calculations as usual.

	Background
	Quick Start
	Prepare Dalton mol file
	Create Control File momap.inp
	Use momap.py to do calculation
	Intel IMPI environment

