MOMAP Tutorial 13

Reorganization Energy Calculation by Using the Four-Point Method with MOMAP

Version 2022A

April, 2022

MOMAP Tutorial 13

Version 2022A edited by:

Dr. Qikai Li Ms. Qi Sun Ms. Shiyun Lin

> Released by Hongzhiwei Technology (Shanghai) Co., Ltd and Z.G. Shuai Group The information in this document applies to version 2022A of MOMAP

Table of Contents

Reorganization Energy Calculation by Using the Four-Point Method with MOMAP	1
Prepare the files	1
Run the job	3

Reorganization Energy Calculation by Using the Four-Point Method with MOMAP

Here we take naphthalene as an example to show how to do the reorganization energy calculations by using the four-point method with MOMAP. In this tutorial, we assume the gaussian QC package (g09 or g16) is properly installed and the scheduling system SLURM is used.

Prepare the files

Suppose we initially have the file moll.mol for naphthalene, we can use Jmol tool to generate a template gaussian input file moll.com.

\$ cat moll.com # HF/3-21G** opt pop=full gfprint Title: Created by Jmol version 14.32.5 2022-04-18 16:19 0 1 С -0.93840 0.11050 2.34410 0.97530 1.59120 С -0.17480 0.62610 0.26510 С 0.20711 1.49910 С 0.99060 -0.54130 С -1.35140 -1.13230 1.81760 0.35060 3.25100 Η -1.22030 1.93540 Η 0.12200 1.81920 2.32580 Η 1.26370 -0.16851 Η -1.88910 -1.75730 2.36510 -0.20711 -0.62610 С -0.26510 С 0.17480 -0.97530 -1.59120 С 0.93840 -0.11050 -2.34410 С 0.54130 -0.99060 -1.49910 С 1.35140 1.13230 -1.81760 Н 1.22030 -0.35060 -3.25100 Η -0.12200 -1.81920 -1.93540Η -1.26370 -2.32580 0.16851 Η 1.88910 1.75730 -2.36510

Note: This is just a template, only the coordinates are used in following generated Gaussian . com files. The converted file lacks an empty line at the end of the file, this will be corrected in the generated . com files.

Next we use the MOMAP momap_geninp.exe with the option -reorg4p to generate the file momap.inp for reorganization energy calculation by using the four-point method:

```
$ momap_geninp.exe -reorg4p
or
$ momap geninp.exe -reorg4p -triplet
```

```
$ ls
```

```
moll.com moll.mol. momap.inp run.sh
 $ cat momap.inp
 &transport
   queue name
                   = X16Cv3
                    = slurm ! pbs, slurm, lsf, or local
   sched type
   compute_engine = 1
                                   ! 1 = \text{Gaussian}, 2 = \text{ORCA}, 3 = \text{QCHEM}
                                   ! g09/g16 or fullpath/orca or qchem
   qc exe
            = g16
 # module qc = gaussian/g16.c01-avx2
   qc method
                                 ! ignored for g09/g16
                     = b3lyp
                     = b3lyp 6-31g(d)
   qc basis
                   = b3lyp 6-31g(d)
   qc basis re
   # UDFT is recommended to use for T1 optimization by setting qc_es_mult = 3
   qc es opt = TD
                                    ! TD, TD(nstates=n); TD(triplets), TD(triplets, nstates=n)
   qc_gs_tddft= TD! n is default to 3, change the number as neededqc_es_mult= 1! default to 1, set to 3 for T1 optimization by UDFT
   qc_es_tddft = TD(triplet) ! used only when qc_es_mult = 3 for T1 optimization
   qc memory
                  = 54096
                                ! MB
   qc nodes
                   = 1
                    = 16
   qc_ppn
```

Users may need to make changes according to one's specific situation. For example, change the queue_name, uncomment the module_qc line, and adjust qc_ppn *etc*. Once the modifications are done, we can continue use the MOMAP tool momap_prep_reorg4p.exe to generate the needed files for reorganization energy calculations by using the four-point method:

```
$ momap_prep_reorg4p.exe -input mol1.com
```

Note: If the option -input is not specified, the tool will search the current directory and use the first found Gaussian .gjf file as the Gaussian input file.

Then quite a few of files will be generated, as shown below:

```
[reorg_by_4p]$ tree ./
./
RE_run.py
jobs
gaussian_log_check.py
re-es.py
re-es.slurm
re-gs.py
re-gs.slurm
moll.com
moll.mol
momap.inp
```

```
re-es.com
re-gs.com
re-gs-tddft.com
run.sh
```

Run the job

Once the above preparations are done, we can simply launch the run.sh bash script to carry out the reorganization energy calculations by using the four-point method. It actually calls the python script RE run.py to do the calculations.

\$ sh run.sh

or

\$./run.sh

If the calculations are finished successfully, then the final files are shown as below:

```
[reorg-by-4p]$ ls
jobs re-es.chk re-gs.log RE_run.py
log re-es.com re-gs-tddft.chk run.sh
moll.com re-es.log re-gs-tddft.com stdout-es
moll.mol re-gs.chk re-gs-tddft.log stdout-gs
momap.inp re-gs.com reorg lambda 4P.dat
```

The final reorganization energy data are put in the file reorg lambda 4P.dat.

The results are also output to the log file as shown below:

```
[reorg-by-4p]$ cat log
```

```
| | | | | | | | | /
                                      Version 2022A
/ /
                            \setminus
Copyright (c) 2017 Shuaigroup @ Tsinghua University &
       Institute of Chemistry, Chinese Academy of Sciences.
       All Rights Reserved.
Job <892> is submitted to queue <normal>.
Job <893> is submitted to gueue <normal>.
Job <894> is submitted to queue <normal>.
Energy definitions:
               2
       2
              2
        2
             2
        2
      E2 |2
            2
        2 E4
```

1 | | 1 1 | |1 1 | 1 1 | 1 E3 1 Ε1 Parsing re-gs.log... E1 = -385.892706528 a.u.Parsing re-gs-tddft.log... E2 = -385.728779049 a.u. Parsing re-es.log... E3 = -385.882505594 a.u. E4 = -385.739039325 a.u. Reorganization energies: lam1 = E3 - E1lam2 = E2 - E4lam = lam1 + lam2lam1 = 431.658901 meV (3481.760694 cm-1) lam2 = 391.452942 meV (3157.459428 cm-1) lam = 823.111843 meV (6639.220122 cm-1) Successfully done at 2022-04-18 07:39:24.359745 DURATION: 0 days 0 hours 11 minutes 52 seconds.