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Luminescent properties of thermally activated delayed fluorescence
molecule with intramolecular π–π interaction between

donor and acceptor∗

Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋),
Lili Lin(蔺丽丽)†, and Chuan-Kui Wang(王传奎)‡

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics,
Shandong Normal University, Ji’nan 250014, China

(Received 2 July 2017; revised manuscript received 23 August 2017; published online 30 September 2017)

Influence of intramolecular π–π interaction on the luminescent properties of thermally activated delayed fluores-
cence (TADF) molecule (3, 5-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-phenyl)(pyridin-4-yl) methanone (DTCBPY) is the-
oretically studied by using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT).
Four conformations (named as A, B, C, and D) of the DTCBPY can be found by relax scanning, and the configuration C
corresponds to the luminescent molecule detected experimentally. Besides, we calculate the proportion of each conforma-
tion by Boltzmann distribution, high configuration ratios (44% and 52%) can be found for C and D. Moreover, C and D are
found to exist with an intramolecular π–π interaction between one donor and the acceptor; the intramolecular interaction
brings a smaller Huang–Rhys factor and reduced reorganization energy. Our work presents a rational explanation for the
experimental results and demonstrates the importance of the intramolecular π–π interaction to the photophysical properties
of TADF molecules.

Keywords: thermally activated delayed fluorescence, intramolecular π–π interaction, Huang–Rhys factor and
reorganization energy, aggregation induced enhanced emission

PACS: 85.60.Bt DOI: 10.1088/1674-1056/26/11/118503

1. Introduction
Great progress has been made in the last three

decades on the development of organic light-emitting diodes
(OLEDs).[1–4] As the third generation of OLEDs, the ther-
mally activated delayed fluorescence (TADF) materials have
received extensive attention in recent years[5–10] since the
pioneering work was performed by Adachi and co-workers
in 2012.[11–13] TADF materials are pure organic molecules
which are cheaper than phosphorescence materials and will
not cause environment pollution. Besides, TADF materi-
als with small energy gap (∆EST) between the lowest sin-
glet excited state (S1) and the lowest triplet excited state (T1)
can make full use of excitons and achieve nearly 100% in-
ternal quantum efficiency (IQE). With the great progress in
TADF-OLEDs, the external quantum efficiency (EQE) of the
OLED device has reached up to 30%, which significantly
breaks the efficiency limitation of fluorescent OLEDs.[14,15]

As TADF molecules are usually formed by donors and ac-
ceptors, large systems may have more than one steady
configuration.[10,16] When they are prepared in the OLED
devices, aggregation-caused quenching (ACQ), aggregation-
induced emission (AIE), and aggregation induced enhanced

emission (AIEE) phenomena can be observed due to the in-
termolecular interaction.[17–19] Numbers of studies of the in-
termolecular interaction on the luminescence properties have
been performed,[20] while the intramolecular interaction on the
light-emitting properties is seldom studied.[21,22] It is found
that the performance of the emitters can be improved by re-
ducing the intramolecular π–π stacking. The intramolecular
interaction can be impacted through adjusting the distance be-
tween the donors and in turn can change the molecular lumi-
nescence properties.[21] How do the π–π interaction between
the donors and acceptors influence the luminescence proper-
ties? There has been no report until now.

Recently, a molecule named (3,5-bis(3,6-di-tert-
butyl-9H-carbazol-9-yl)-phenyl) (pyridin-4-yl) methanone
(DTCBPY) (as shown in Fig. 1) was synthesized and the
light-emitting properties were studied in solvent and solid
states.[23] It was found that the intramolecular interaction be-
tween the donor and adjacent acceptor units plays an im-
portant role in displaying efficient TADF properties. In this
paper, the DTCBPY molecule is chosen as a model system to
study the influence of the intramolecular interaction between
donor groups and acceptors on its photophysical properties.

∗Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 21403133), Taishan Scholar Project of Shandong Normal
University, China, the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province, China (Grant No. BS2014cl001), and
the China Postdoctoral Science Foundation (Grant No. 2014M560571).
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First-principles calculations combined with the excited states
dynamics will provide more information on the relationship
between the intramolecular interaction and the photophysical
properties.

N

N

N

O

DL DR

DTCBPY

low layer (LL)

high layer (HL)

(a)

(b)

Fig. 1. (color online) (a) Geometry structure of the studied molecule
DTCBPY. (b) ONIOM model: the centered C configuration is treated
as a high layer and the surrounding configurations are fixed as a low
layer.

2. Computational methods
In this paper, the density functional theory (DFT) is used

to perform the optimization and electronic structure calcula-
tion of the molecule in ground state. The time-dependent den-
sity functional theory (TD-DFT) is employed to investigate the
properties of the excited states. In the calculations, the pbe0-
1/3 exchange functional and the 6-31G(d) basis set are used.
The polarizable continuum model (PCM) is used to take into
account the solvent effect in all simulations.[24,25]

The photoluminescence quantum yield (PLQY) is deter-
mined by the radiative rate (ks

r) and the non-radiative rate (ks
nr).

ks
r can be computed using the Einstein spontaneous emission

rate equation, which is written as

kr =
f ∆E2

fi
1.499 cm−2 · s

.

Here f is the oscillator strength without dimension and ∆Efi in
units of wavenumber (cm−1) is the energy difference between

the initial state and the final state.[26] ks
nr reflects the energy re-

laxation process through molecular vibration, and it has a close
relationship with the Huang–Rhys (HR) factor and reorgani-
zation energy (λ ). The HR and λ can be calculated with the
DUSHIN module in the MOMAP (Molecular Materials Prop-
erty Prediction Package) program, which shows superiority in
describing and predicting the optical properties of polyatomic
molecules.[27,28]

In order to visualize the intramolecular interaction be-
tween the donor and the acceptor, the reduced density gradient
(RDG) method is adopted. The RDG formula is written as

RDG =
1

2(3π2)2

∣∣∇ρ(r)
∣∣

ρ
4/3
(r)

,

where ρ(r) is the electronic density. Through analysis of the
RDG values, one can easily distinguish the area of near nu-
clei, near chemical bonds region, weak interacting regions and
the edges of the molecule. This method can also highlight the
areas of π–π intramolecular interaction in the system and help
to visualize the region that is associated with the intramolecu-
lar π–π interaction.[29]

In experiment, the PLQY of the molecule in toluene is
30.3%, while it reaches up to 91.4% in solid state. It means
that the luminescence efficiency of the molecule is greatly en-
hanced in the aggregation state. To explain this phenomenon,
the combined quantum mechanics and molecular mechan-
ics (QM/MM) method is adopted to study the electrolumi-
nescent properties of the DTCBPY molecule by consider-
ing the environment effect in aggregation state.[28] The ini-
tial structure is obtained from the x-ray crystal structure de-
tected experimentally.[19] The QM/MM calculation is realized
with the ONIOM method in Gaussian 09 program.[24] In this
model, two “layers” are constructed, as shown in Fig. 1(b).
The central molecule is treated as a high layer and calcu-
lated by the quantum mechanical method. The surrounding
molecules are treated as a low layer and computed by molec-
ular mechanics with UFF forces field.[30]

3. Results and discussion
3.1. Molecular geometric structure

The DTCBPY molecule consists of two donors and one
acceptor, which possesses a flexible configuration, as shown
in Fig. 1(a). By relax scanning, we find that the molecule has
four configurations as shown in Fig. 2 (with the short names
of A, B, C and D). For A and C, the molecular surfaces of the
two donor groups are perpendicular to each other, while the
surfaces of the two donor groups in B and D are parallel. For
A and B, the surface of the acceptor group is almost perpen-
dicular to the adjacent donor group. While, for C and D, the

118503-2
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dihedral angle between the two groups is almost 45◦. The pop-
ulation proportion of each configuration in the ground state is
calculated according to the Boltzmann distribution which can
be written as[31]

pi =
ni

∑
j

n j
=

e
−Ei
RT

∑
j

e
−E j
RT

=
Qi

Q
,

where p is the proportion, i represents the configuration, ni is
the number of molecules in the i-th configuration, and E is the
energy of the configuration. T is the temperature (in units of
K), and R is the ideal gas constant. Q is the partition function.
By using the relative energies of different conformations, the
Boltzmann distribution formula can be rewritten as

pi =
e

−∆Ei
RT

∑
j

e
−∆E j

RT

=
Qi(Relat)

Q(Relat)
.

Here ∆Ei is the relative value of conformation i, and the values
are shown in Table 2. The proportions of the four conforma-
tions calculated based on the above formula are also listed in
Table 2. In the table, the energy of D is set as the benchmark.
The energy of C is only 0.1 kcal/mol larger than C, while A
and B are 2.08 kcal/mol and 1.91 kcal/mol larger than D re-
spectively. The population proportions of C and D are 44%
and 52% respectively, while the proportions of A and B are
1.5% and 2.5%. The potential energy surface of the molecule
in ground state is shown in Fig. 3. From the figure, we can
see that the energy barrier from C to D is only 0.05 eV. The
backward energy barrier is also quite small (0.06 eV). Con-
sequently, we conclude that configurations C and D are easily
transformed to each other.[8] However, the energy barrier from
C to B is 0.12 eV, which means that it is impossible for con-
figuration C to transform to B. While the energy barrier from

B to C is only 0.03 eV, and the energy barriers between A

and B (forward and backward) are all quite small (0.36 eV).

Based on the values above, we can conclude that most of the

molecules are in configurations C and D. The absorption and

emission wavelengths for different configurations are shown

in Table 1. We can see that the absorption wavelengths for A

and B (428 nm and 435 nm) are a little longer than those of C

and D (408 nm and 410 nm). All the values are close to the

experimental values (418 nm). The emission wavelengths for

A and B (590 nm and 600 nm) are about 70 nm longer than

those of C and D (519 nm and 527 nm). In comparison with

the experimental value (508 nm), we conclude that most pos-

sible configurations of the molecule are C and D. The result

is consistent with the energy analysis above. In addition, we

find that the configuration C agrees with the molecular struc-

ture detected by the x-ray diffraction, which also confirms our

conclusion.[23]

DTCBPY

A (2%) B (2%)

C (44%) D (52%)

Fig. 2. (color online) Four configurations of the DTCBPY and the pro-
portion ratios of the configurations.

Table 1. Absorption wavelength, emission wavelength, oscillator strength, radiative rate, stokes shift (λshift), and energy gap for the
four configurations.

Configuration Absorption/nm Emission/nm f Kr/106 s−1 λshift/nm ∆EST/eV
A 428 590 0.0057 1.0 162 0.18
B 435 600 0.0068 1.3 165 0.22
C 408 (418a) 519 (508a) 0.0146 3.6 111 0.30
D 410 528 0.0140 3.4 118 0.32

aExperimental data in toluene.

Table 2. Relative energy of the four conformations and their propor-
tions.

Configuration ∆E/kcal·mol−1 Percentage/%
A 2.08 1.5
B 1.91 2.5
C 0.10 44
D 0 52

Based the analysis above, the configurations of C and D
have the most possible configurations. From the configura-

tions of C and D, we can see that the acceptor group is close to
one donor group, thus we deduce that there is intramolecular
π–π interaction between them. To visualize the intramolecular
interaction more intuitively, the RDG method is used (shown
in Fig. 4). From this figure, we can see that there is significant
interaction between the acceptor and the adjacent donor group.
This confirms that there is intramolecular π–π interaction be-
tween them.
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0.036 eV
0.036 eV 0.03 eV

0.12 eV

0.05 eV

0.06 eV

A B

C

D

Fig. 3. (color online) Potential energy surface and energy barrier of the
molecule. The geometric structure of the molecule in each point is also
presented.

ρ>0 λ2<0

H bond, X bond

ρa0 λ2a0

Van der Waals

ρ>0 λ2>0

Steric hindrance

C D

Fig. 4. (color online) Intramolecular π–π interaction between the ac-
ceptor and the donor nearby described by the RDG method. The weak
interacting area is marked with the red circle.

3.2. Excited state property and energy gap

The electron distributions of the highest occupied molec-
ular orbital (HOMO) and the lowest unoccupied molecular or-

bital (LUMO) as well as their energy levels for four configu-
rations are shown in Fig. 5. The energies of HOMOs for A, B,
C, and D are −5.86 eV, −5.84 eV, −5.89 eV, and −5.87 eV,
respectively, and they are almost equal. While the energies
of LUMOs for C and D are −1.82 eV and −1.80 eV, respec-
tively, which are larger than those of A and B (−1.92 eV and
−1.91 eV). Based on the analysis of the frontier molecular
orbitals, we find that the position of the acceptor groups can
influence the energy levels of LUMOs. In comparison with
A and B, we can conclude that the π–π interaction between
the donors and acceptors can increase the energy levels of LU-
MOs. In addition, one can see that the electron distributions
of HOMOs and LUMOs for A and B are also a little differ-
ent from those of C and D. The overlap between HOMOs and
LUMOs for C and D (0.274 and 0.277) is larger than that for
A and B (0.212 and 0.213), which can induce a different ra-
diation rate (ks

r) and ∆EST. The oscillator strengths ( f ), ra-
diation rates, and ∆EST for the four configurations are shown
in Table 1. The oscillator strengths of A and B are smaller
than those of C and D. The radiation rates for A and B are
1.03×106 s−1 and 1.3×106 s−1, respectively, while they are
3.6×106 s−1 and 3.4×106 s−1 for C and D. The kr of A and B
are also far smaller than those of C and D.[32] The correspond-
ing ∆EST for A and B are 0.18 eV and 0.22 eV, respectively.
They are increased to 0.30 eV and 0.32 eV for C and D. From
these results, we find that larger overlap between HOMOs and
LUMOs will induce increased radiation rate (ks

r) and smaller
∆EST. This can be explained using the formula

∆Est = 2K.

-1

-2

-3

-4

-5

-6

-5.86 eV

3.94 eV (0.212)

-1.92 eV

-5.84 eV

3.93 eV (0.213)

-1.91 eV

-5.89 eV

4.07 eV (0.274)

-1.82 eV

-5.87 eV

4.07 eV (0.277)

-1.80 eV
LUMO

HOMO

A B C D

E
n
e
rg

y
/
e
V

Fig. 5. (color online) Distributions of frontier molecular orbitals of the configurations. The energy levels of HOMOs and LUMOs as
well as their energy gaps are also shown. The overlaps between HOMOs and LUMOs are listed in the bracket.
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Here K is the exchange energy, and it can be calculated by the
formula

K =
∫∫

φL (1)φH (2)
1

r12
φL (2)φ H (1) dτ1 dτ2,

where φH and φL represent the wave functions of the HOMO
and LUMO, respectively. For TADF molecules, an endother-
mic up-conversion process from T1 to S1 state can be ther-
mally activated when ∆Est is small. The small ∆Est can be
achieved by decreasing the overlap between HOMOs and LU-
MOs. The f is determined by the transition dipole moment µ

which can be written as

µ =
∫∫

φL (1)φH (2)r12φL (2)φ H (1) dτ1 dτ2.

One can see that the overlap between HOMO and LUMO
can also influence µ . Thus f will also be determined by the
HOMO–LUMO overlap. The larger the overlap, the bigger the
f . As a result, the TADF molecules should have a proper over-
lap between HOMOs and LUMOs, which can be regulated by
adjusting the intramolecular interaction. Based on the analy-
sis above, we find that the intramolecular π–π interaction be-
tween the acceptor and the donor can effectively enhance the
light-emitting efficiency, which may help us to design high-
efficient light-emitting materials.

3.3. Influence on the non-radiative rate

Reorganization energy (λ ) can be expressed as a summa-
tion of the contributions from normal mode (NM) relaxation
in the harmonic oscillator approximation[27]

λgs = ∑
kεgs

λk = ∑
kεgs

}ωkHRk,

λes = ∑
kεes

λk = ∑
kεes

}ωkHRk,

HRk =
ωkD2

k
2}

.

In the formula, HRk represents the Huang–Rhys factor for the
k-th mode, and Dk is the displacement for mode k between the
equilibrium geometries of S0 and S1. The maximum Huang–
Rhys factor (HRmax) and the corresponding λ are listed in Ta-
ble 3. It is found that the HRmax values for A and B are 16.8
and 23.2, while they are 9.3 and 8.9 for C and D. The λ values
for A and B are 4869 meV and 7492 meV, which are much
larger than those for C and D (1165 meV and 1175 meV). As
the non-radiative rate is almost in proportion with the reorga-
nization energy, we can deduce a smaller non-radiative rate
for C and D. It is also indicated that the intramolecular π–
π interaction may induce small HR and λ , and in turn result
in a small ks

nr and a high PLQY. By detailed analysis of the
vibration mode with the largest Huang–Rhys factor, we find
that it corresponds to the out-of-face vibration of the acceptor
group and the donor groups. This kind of motion may induce

the change of the dihedral angle between the acceptor and the
donor. Furthermore, the intramolecular π–π interaction will
be influenced.

Table 3. Reorganization energy λ and the maximum Huang–Rhys fac-
tor HRmax for four configurations.

Configuration HRmax λ/meV
A 16.8 4869
B 23.2 7492
C 9.3 1165
D 8.9 1174

Further, the QM/MM method is used to study the change
of the dihedral angles of the molecule in ground state and ex-
cited state in solution and in solid state (as listed in Table 4).
In toluene, the dihedral angle between the surfaces of the left
donor (DL) and the acceptor in ground state is 57.79◦, and it
is 51.03◦ for the right donor (DR) and the acceptor. For the
S1 state, they become 50.77◦ and 45.89◦. The dihedral an-
gle changes between the ground state and the S1 is 7.02◦ and
5.14◦, respectively. In solid state (see Fig. 1), the dihedral
angles are 61.2◦ and 57.0◦ in the ground state, and they are
61.3◦ and 54.6◦ in S1. The dihedral angle changes are only
0.1◦ and 2.4◦, respectively. Compared with the dihedral an-
gle change in a solvent, the dihedral angle change in a solid
decreases obviously. The geometric change is suppressed in a
solid, which will induce a smaller reorganization energy, and
decrease the ks

nr. As a result, the PLQY will be enhanced. In
experiment, the PLQY in a solid is greater than that in a sol-
vent, which confirms our conclusion. Based on our results, we
deduce that the molecule has the characteristics of aggregation
induced enhanced emission.

Table 4. Dihedral angles between the left (right) donor and the acceptor
(DL and DR respectively) for the molecule in ground state and S1 state.
The differences are also shown.

DL(S0) DL(S1) ∆DL DR(S0) DR(S1) ∆DR

Solvent 57.7 50.8 6.9 51.0 45.9 5.1
Solid 61.2 61.3 0.1 57 54.6 2.4

4. Conclusion
We have studied a TADF molecule named DTCBPY with

the DFT and TD-DFT methods. Through relax scanning, we
find that the molecule has four different conformations, and
the configuration C is consistent with the molecule structure
detected in the experiment. Our theoretical results also indi-
cate that both C and D have the most possible configurations
for DTCBPY. By using the RDG function, we confirm that
there is significant π–π interaction between the acceptor and
the donor groups nearby in C and D. By analysis of the Huang–
Rhys factor and the reorganization energy, we deduce that the
intramolecular interaction can induce a smaller non-radiative
rate and a high PLQY. In addition, the QM/MM method is
used to study the structural changes of the molecule between
the ground state and the S1 state in the solid state. Compared
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with the dihedral angle change in a solvent, the dihedral an-
gle change in a solid state decreases obviously, which may
result in suppressed non-radiative transition and enhanced lu-
minous efficiency. Based on our calculation results, we deduce
that the molecule may have the properties of aggregation in-
duced enhanced emission. Our theoretical research provides
valuable information for the design of highly-efficient organic
light-emitting molecules.
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