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A B S T R A C T

Photoreduction of CO2 as an attractive path for CO2 conversion has drawn widespread interest. Experiments
demonstrating the photoreduction of CO2 are conducted in water solution in the excited state, and solvent
molecules play a major role in the reaction mechanism. Thus, a simple gas-phase CO2 model of the ground-state
cannot fully demonstrate the characteristics of aqueous CO2 and the mechanisms of CO2 photoreduction in the
excited state. A deep understanding of the characteristics of aqueous CO2 as the basic reactant is the cornerstone
for the development of photocatalysts. In this study, a systemic investigation involving photophysics and pho-
tochemistry was performed to determine its existential status, kinetic and thermodynamic characteristics. In the
excited state, H2CO3 as the main inorganic carbon in pure water should be considered in the photoreduction of
CO2, and the development of photocatalysts should compatible with its characteristics.

1. Introduction

Photoreduction of carbon dioxide (CO2) is considered an excellent
method that can potentially solve global warming and energy shortage
worldwide [1–4]. During photoreduction, CO2 is activated under light
radiation and converted in the excited state [5]. Experiments in the
photoreduction of CO2 are usually conducted in a water solution
[1–4,6,7]. Their mechanisms are explored using the gas-phase CO2

model in the ground state as the base substrate [8–11]. However, the
characteristics of CO2 in a water solution and the gas phase are varied
[12,13]. The substrate characteristics in the ground state and the ex-
cited state are also differ to a greater extent [14,15]. Consequently,
merely using the simple gas-phase CO2 model of the ground state to
study the mechanisms of CO2 photoreduction requires more improve-
ment. To address this concern, the characteristics of CO2 in water so-
lution (namely aqueous CO2) in the excited state should be investigated,
and suitable photocatalysts compatible with its characteristics should
be developed.

The mechanisms underlying the photoreduction of CO2 involve
complex photophysical transition and photochemical reaction.
Investigation of photophysics and photochemistry provides valuable
information. For instance, competition of photophysical transitions and
the lifetime of excited states can determine the fate of the CO2 mole-
cules in the excited state [16,17]. The activation energy (Ea), Gibbs free
energy of activation (ΔrG) and the relative energy of each stationary

point reveal the of kinetic and thermodynamic characteristics [18,19].
Thus, the photophysics and photochemistry characteristics of aqueous
CO2 as the basic reactant are of great importance to obtain an in-depth
understanding of CO2 photoreduction.

In this study, the aqueous CO2 in the excited state was explored
from the photophysical and photochemical perspectives by using Time-
dependent density functional theory (TDDFT). TDDFT plays a key role
in the study of excited state [20,21]. Activation of aqueous CO2 was
discussed by the geometry change and charge transfer. The rate con-
stants of the photophysical and photochemical processes further ex-
plored its existential status in the excited state.

2. Calculation method

2.1. Theory

Photophysics includes radiative transition (fluorescence emission
and phosphorescence emission) and non-radiative transition (internal
conversion and intersystem crossing). In aqueous CO2, the rate con-
stants of radiative transition are considerably lower than that of non-
radiative transition, which is listed in Table S1. Thus, the radiative
transition is neglected. Here, the photophysics involves three processes:
(ⅰ) internal conversion (IC) of aqueous CO2 transferred from the first
excited singlet state (S1) to the ground state (S0); (ⅱ) intersystem
crossing (ISC) of aqueous CO2 transferred from the S1 state to the first
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excited triplet state (T1); (ⅲ) the ISC of aqueous CO2 transferred from
the T1 state to the S0 state. The rate constants of IC and ISC are cal-
culated as follows: [16,17]
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where k is the rate constant; h is the Planck constant; Piv is the Boltz-
mann distribution of the initial state; T is the temperature; Φ represents
the electronic state; Θ is the vibrational wavefunction; P̂n indicates the
momentum operator of the nth normal vibrational mode in the final
state; Ĥ SO denotes the Hamiltonian operator of spin-orbit coupling; E
indicates the energy; i and f are the initial and the final state, respec-
tively; v and u are the vibrational quantum numbers of the initial state
and the final state, respectively.

The reaction rate constant is obtained from Arrhenius equation
[22–25].
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where kb is the Boltzmann constant and ΔrG is the Gibbs free energy of
activation, which is calculated by comparing the Gibbs free energies
between the transition state and the reactant; R is the gas constant; vi is
the imaginary frequency of the transition state, which is listed in Table
S5.

The amount of charge transfer of fragment A during electron ex-
citation is calculated as follows:

= −Q q qA A,ex A,gs

where Q is the amount of charge transfer; q is the charge of the frag-
ment, which is derived by summing up the atom charge of the fragment;
gs and ex are the ground state and the excited state, respectively.

2.2. Calculation details

The integral equation formalism of polarized continuum model
(IEFPCM) [26] as the solvent model, in conjunction with the B3LYP
hybrid functional [27], was adopted in all calculations by using the
Gaussian 16 program [28]; the ground state (S0) and excited state (S1
and T1) were calculated by density functional theory (DFT) and TDDFT,
respectively [29,30]. Geometry optimization, vibrational frequency
calculation, activation energy (Ea), Gibbs free energy of activation
(ΔrG), Gibbs free energy of change (ΔG), and the atomic dipole cor-
rected Hirshfeld (ADCH) atomic charge [31] were performed at the
level of 6-311G++(d,p) basis set [32,33]. These results were analyzed
by using Multiwfn software [34]. The dispersion correction was con-
sidered using D3BJ [35,36], and the temperature was set to 298 K in
calculating Gibbs free energy and photophysics. The photophysics was
calculated using the MOMAP software [16,17,37,38].

3. Results and discussion

As reported in previous quantum studies of CO2 reaction with H2O
in the ground state, the solvent water molecules evidently affected Ea
[12,13]. To adequately evaluate the effect of water molecules, the
different number (from one to four) of water molecules that partici-
pated in the reaction was calculated. As shown in Figure S1, the Ea
(17.2 kcal mol−1) of H2CO3 formed from one carbon dioxide molecule
and three water molecules was consistent with the experimental value
(17.7 kcal mol−1) [39]. Moreover, CO2 as the main inorganic carbon
exists in pure water in the ground state [40]. Thus, we adopted one
carbon dioxide molecule and three water molecules as the primitive
model to reveal the characteristics of aqueous CO2 in the excited state.

3.1. Photophysics of aqueous CO2

As shown in Fig. 1a, the photophysics of aqueous CO2 has three non-
radiative transition paths: IC, −ISC(S T)1 1 and −ISC(T S )1 0 . The rate
constants kIC and −kISC(S T )1 1 are 2.2× 103 s−1 and 3.6×107 s−1, re-
spectively (see Table 1). Thus, aqueous CO2 in the S1 state prefers to
shift to the T1 state, and only a fraction of them return to the S0 state.

Fig. 1. Photophysics of aqueous CO2 (a), the structures of aqueous CO2 in the S1 state (b) and the S0 state (c). k means the rate constant, τ indicates the lifetime. The
water molecules are labeled as 1-H2O, 2-H2O and 3-H2O, respectively, which are presented on the oxygen atom. Text in black denotes the bond length and text in blue
denotes the bond angle. The grey ball, white ball and red ball indicate the C, H, and O atoms, respectively.
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After aqueous CO2 reaches the T1 state, it returns to the S0 state, and the
−kISC(T S )1 0 is 5.0× 108 s−1. The lifetimes τS1 and τT1 are 1.7× 10-8 s and

2.0×10-9 s, respectively. In this way, aqueous CO2 in the excited state
mainly existed in the S1 state. We investigated the aqueous CO2 in the
excited state by comparing its characteristics in the S0 and S1 states.

There are three water molecules in this system, which labeled 1-
H2O, 2-H2O and 3-H2O. As shown in Figs. 1b and 1c, the structure of
aqueous CO2 evidently changed during excitation. The length between
the C atom (CO2) and the O atom (1-H2O) changes from 2.76 Å to

1.89 Å, which is shortened by 0.87 Å. The intermolecular hydrogen
bond between the H atom (1-H2O) and the O atom (2-H2O) changes
from 1.81 Å to 1.56 Å, indicating that the intermolecular hydrogen
bond becomes stronger. Moreover, the bond angle of CO2 changes from
176.9° to 114.4°. Thus, the inert linear structure of the CO2 transferred
to the V-type structure, which affects the charge distribution and fur-
ther activates the aqueous CO2. More details about the structures of
aqueous CO2 are shown in Figure S2 and Table S1.

The ADCH charge as the correction of Hirshfeld charge provides
accurate distribution of atomic charge and has very good electrostatic
potential reproducibility. Thus, we used it to quantitatively investigate
the charge transfer during excitation. As shown in Fig. 2, the ADCH
charges of CO2, 2-H2O and 3-H2O all become more negative from 0.021,
0.002 and 0.073 in the S0 state to -0.561, -0.105 and 0.029 in the S1
state. Only ADCH charges of 1-H2O become more positive from -0.097
to 0.638. Thus, electron transfers from 1-H2O to other molecules. In
other words, the CO2 and water molecules are activated. The distance
between the O atom of 1-H2O and the neighbouring the C atom of CO2

decreases from 2.76 Å to 1.89 Å, which may play an important role
during the activation. More details about ADCH charges were presented
in Table S3.

Table 1
The theoretical parameters in the photophysics and photochemistry.

Photophysics Parameters CO2 H2CO3

The rate constant (s−1) kIC 2.2×103 2.1×1010

−kISC(S1 T1) 3.6×107 5.3×106

−kISC(T1 S0) 5.0×108 1.9×107

The lifetime (s) τS1 1.7×10−8 4.8×10−11

τT1 2.0×10−9 5.3×10−8

Photochemistry Rate constants (s−1) Forward Reverse
Reaction 1 6.2×1012 2.0×107

Reaction 2 1.2×1012 1.5×1011

Fig. 2. The transfer of ADCH charge of aqueous CO2 during excitation. The ADCH charge of aqueous CO2 in the S1 state (a) and the S0 state (b). The tan text denotes
ADCH charge of molecules and the black text denotes the amount of ADCH charge transfer.
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3.2. Photochemistry of aqueous CO2

After the system is excited to the S1 state, photochemical reactions
can initiate. As shown in Fig. 3, CO2 react with water molecules to
generate H2CO3 and HCO3

−. The corresponding Ea were 0.0 and
1.0 kcal mol-1, respectively. The reaction selectivity was determined by
the direction of the C]O bond of the CO2 molecule. H2CO3 is formed
(Reaction 1) when the C]O bond is facing to the 3-H2O molecule;
HCO3

− is generated (Reaction 2) when the C]O bond deviates from
the 3-H2O molecule.

The rate constant of H2CO3 formation is 6.2× 1012 s−1, which is

five orders of magnitude larger than that of the reverse reaction (see
Table 1). The rate constant of HCO3- formation was 1.2× 1012 s−1,
which is one order of magnitude larger than that of the reverse reaction.
Thus, from the kinetic perspective, H2CO3 is the dominant form of in-
organic carbon in the excited state. HCO3- and CO2 make up small
proportion. In addition, the rate constant of aqueous CO2 to generate
H2CO3 is markedly significantly larger than −kISC(S T )1 1 and kIC, indicating
that most of aqueous CO2 in the S1 state tend to generate H2CO3 instead
of performing photophysical transitions to S0 and T1 states.

The thermodynamic process was investigated using ΔG, obtained by
comparing the Gibbs free energies of the product and the reactant. The
ΔG of H2CO3 and HCO3

− formation are -7.2 and 0.0 kcal mol-1, re-
spectively, indicating that they were spontaneous reactions from the
thermodynamic perspective. In particular, the ΔG of H2CO3 formation
was smaller than that of HCO3

− formation, demonstrating that H2CO3

was more stable than HCO3
− and CO2 in the excited state. Thus, in the

excited state H2CO3 is the dominant form.

3.3. Photophysics of aqueous H2CO3

We further investigated the photophysical process of H2CO3 to in-
vestigate its fate in the excited state. As shown in Fig. 4a, there are three
transition paths and the corresponding rate constants are listed in
Table 1. The ′kIC and −

′kISC(S T )1 1 are calculated to be 2.1× 1010 s−1 and
5.3×106 s−1, respectively. Thus, the aqueous H2CO3 in the S1 state
prefers to return to the S0 state, and only a fraction can transfer to the
T1 state, which may be the reason for the low yield of CO2 photo-
reduction in the triplet state. After aqueous H2CO3 reaches the T1 state
it also has a path to return to the S0 state. The corresponding rate
constant −

′kISC(T S )1 0 is 1.9× 107 s−1. The lifetimes ′τS1 and ′τT1 are cal-
culated as 4.7×10-11 s and 5.3× 10-8 s, respectively. Thus, after
aqueous H2CO3 reaches T1 state it has a longer lifetime than in the S1
state. Furthermore, the ′τT1 was much larger than τS1, we proposed that
aqueous H2CO3 as the major reaction substrate should be considered in
the photoreduction of CO2 in the triplet state.

The structure and ADCH charge of aqueous H2CO3 in the T1 state
were explored to reveal its characteristics. The structure of aqueous
H2CO3 significantly changed from the T1 state (Fig. 3b) to the S0 state
(Fig. 3c). The bond of C1-O2 changed from a single bond with a length
of 1.50 Å to a double bond with a length of 1.21 Å. Thus, the bond
energy of C1-O2 in the T1 state is weaker and more easily fractured.

Fig. 3. Formation mechanisms of H2CO3 and HCO3
− from CO2 and 3 H2O. The

black line represents H2CO3 formation (Reaction 1) and blue line represents
HCO3- formation (Reaction 2).

Fig. 4. Photophysics of aqueous H2CO3 (a), the structure of aqueous H2CO3 in the T1 state (b) and the S0 state (c). The black texts on the atoms denote atomic
number, the red texts denote ADCH charge and the blue texts denote the bond length.
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These results were confirmed by the change of ADCH charge. The
ADCH charge of the O2 atom increases from -0.473 to -0.059, whereas
that of the C1 atom decreases from 0.415 to 0.212. Thus, the O2 atom
preferred to react with the neighbouring catalyst in the T1 state. Con-
sidering all the characteristics of aqueous H2CO3 in the T1 state, H2CO3

is the main form of substrate in the photoreduction of CO2.

4. Conclusions

The characteristics of aqueous CO2 in the excited state were sys-
tematically investigated by photophysics and photochemistry. By
comparing a series of rate constants of photophysical process, we
concluded that the aqueous CO2 of the excited state existed in the S1
state and aqueous H2CO3 of the excited state existed in the T1 state.
Moreover, from the kinetic and thermodynamic perspectives, inorganic
carbon of the excited state constituted a large amount of H2CO3, with a
fraction of HCO3

− and CO2 in pure water. Thus, aqueous H2CO3 as a
major reaction substrate should be considered in the photoreduction of
CO2, and the development of photocatalysts should be suitable to its
characteristics.
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